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Objectives

Our objectives are:

1) to characterize the ability of oligopolistic firms to implement a collusive strategy when

their ability to punish deviations over one or several periods is limited;

2) to draw policy implications.

The limited liability constraint formalizes:

structural conditions (e.g., finite demand);

a regulatory mechanism (e.g., prudential ratio);

financial market pressure (e.g., profitability target).
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The Main Results

When the limited liability constraint binds:

there exists an infinity of optimal multi-period punishment paths that permit firms

to implement a given collusive strategy;

the lowest discount factor for a collusive strategy to be implementable can always be

reached with a finite number of punishment periods;

this discount threshold is strictly lower with a multi-period punishment profile than

with a single-period punishment scheme;

a longer punishment is only an imperfect substitute for more immediate severity.

As a policy implication, a well-adjusted limited liability constraint can restore competition

by iteration.
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The Model

Symmetric firms in N = {1, . . . , n} play a repeated stage-game over t = 1, 2, . . . ,∞.

Initially all firms play am ∈ A ⊂ R+ for an individual payoff πm ≡ π (am) in each period.

If a firm deviates from am in period t, all firms switch to the punishment action

aP ,k , and earn π (aP ,k ) ≤ πm , in period(s) t + 1, . . . , t + k , . . . , t + l , with l ≥ 1.

If a firm deviates from aP ,k in period t + k , with k = 1, . . . , l , the l -period

punishment phase restarts.

Otherwise after l punishment periods all firms switch back to am .
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The Model

The main assumptions:

(A1) Firms incur a fixed cost f ≥ 0, and a variable cost c (qi ) ≥ 0, to sell
substitutable goods (possibly differentiated), with either price (a = p) or

quantity (a = q) as a strategic variable;

(A2) Each firm i’s inverse demand function pi : Rn+ → R+ is non-increasing

and continuous;

(A3) pi (0) > c and limqi→∞ pi (qi ,q−i ) = 0, any q−i in Rn−1+ .
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The Model

To compare, the main assumptions in Abreu (1986) are:

(Ã1) Firms sell a homogeneous good at constant marginal cost c > 0, and

their strategic variable is quantity;

(Ã2) The market inverse demand function p(q) : R+ → R+ is strictly

decreasing and continuous in q = ∑i∈N qi ;

(Ã3) p (0) > c and limq→∞ p (q) = 0.

⇒ lim
qi→∞

(p (q)− c) qi = −∞
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The Model

The notation:

am : collusive action

aNE : stage-game Nash equilibrium action

aP ,k : punishment action in period k = 1, . . . , l

π(a) : stage profit when all firms play the same a (with πm ≡ π(am))

πdi (a) : firm i’s one-shot best reply benefits to a as played by all rivals in N\{i}

δ ∈ (0, 1) : discount factor
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The Benchmark

Incentive constraint (no deviation from collusion):

πdi (am)− πm ≤ δ [πm − π(aP )] (IC0 )

Incentive constraint (no deviation from punishment):

πdi (aP )− π(aP ) ≤ δ [πm − π(aP )] (IC1)

Participation constraint:

(1− δ) [πm − π(aP )] ≤ πm (PC )

Limited Liability constraint:

π(aP ) ≥ π, (LLC )

with π ≡ π (aP ).
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The Benchmark

Given am , the single-period punisment δ-minimization problem in aP is

min
aP∈A

δ

s .t. IC0, IC1, PC, LLC
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The Benchmark

Proposition 1

The collusive action am � a∗m is implementable with a single-period punishment if and
only if δ ≥ δ∗1 , with

δ∗1 =


δ∗ ≡ πdi (am )−πm

πm−π(a∗P )
if a∗P � aP , aP (regime 1);

δ ≡ πdi (am )−πm
πm−π if aP � aP , a∗P (regime 2);

δ ≡ πdi (am )−πm
πm−π if aP � a∗P , aP (regime 3).

(1)

If π > πm −
(
πdi (am)− πm

)
then δ > 1 and am cannot be implemented for any δ.

Remark 1

If a∗P � aP , aP , so that regime 1 applies, δ∗ ≥ δ, δ.
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The Multi-Period Setup

If a firm does not deviate from the punishment path, the continuation profits it earns

from period s + 1 onward is

Vs (aP , δ) =
l

∑
k=s+1

δk−s−1π(aP ,k ) +
∞

∑
k=l+1

δk−s−1πm .
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The Multi-Period Setup

Multi-period Incentive constraints:

πdi (am)− πm ≤ δ [V0 (am , δ)− V0 (aP , δ)] , (MIC 0)

and
πdi (aP ,1)− π (aP ,1) ≤ δ [V1 (aP , δ)− V0 (aP , δ)] ,

. . .

πdi (aP ,s )− π(aP ,s ) ≤ δ [Vs (aP , δ)− V0 (aP , δ)] ,

. . .

πdi (aP ,l )− π(aP ,l ) ≤ δ [Vl (aP , δ)− V0 (aP , δ)] ,

(MIC 1, ..., l)

with 1 ≤ s ≤ l .
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The Multi-Period Setup

Multi-period Participation constraint:

(1− δ) [V0 (am , δ)− Vs (aP , δ)] ≤ πm , (MPC )

all s = 0, 1, . . . , l .

Multi-period Limited Liability constraint:

π(aP ,k ) ≥ π, (MLLC )

with 1 ≤ k ≤ l , all l ≥ 2, and π ≡ π (aP ) .
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The Multi-Period Setup

Given all constraints, the multi-period punishment problem is

min
(aP ,1 ,...,aP ,l )∈Al

δ

s .t. (MIC 0−MIC l);MPC ;MLLC
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The Multi-Period Setup

Lemma 2

Given aP ,1, the lowest discount factor δ verifying (MIC 0) and (MIC 1) results from

punishment actions aP ,k , with k > 1, such that these two multi-period incentive

constraints bind.

Proposition 2

In the multi-period punishment scheme, if a∗P � aP , aP the collusive action am � a∗m is
implementable if and only if δ ≥ δ∗, and a∗P ≡ (a∗P , am , . . . , am) is optimal.

Billette de Villemeur, Flochel, Versaevel () Optimal Collusion June 2011 15 / 25



The Multi-Period Setup

Lemma 3

The lowest δ compatible with (MIC 0) and (MPC ) is δ ≡ πdi (am )−πm
πdi (am )

.

Proposition 3

In the multi-period punishment scheme, if aP � aP , a∗P , the collusive action am � a∗m is
implementable if and only if δ ≥ δ, and aP ≡ (aP , am , . . . , am) is optimal.
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The Multi-Period Setup

Lemma 4

The lowest δ compatible with (MIC 0) and (MLLC ) is δ′ ≡ πdi (am )−πm
πdi (am )−πdi (aP )

.

Proposition 4

In the multi-period punishment scheme, if aP � a∗P , aP collusion at am is implementable
if and only if δ ≥ δM ≡ sup{δ, δ′}, with aP ≡ (aP , aP ,2, . . . , aP ,l ) of finite length l .
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The Multi-Period Setup

Remark 4

If (MLLC ) is strictly binding, that is if aP � a∗P , aP , there exits a continuum of optimal

punishments (aP , a2, . . . , al ) of finite length l ≥ 2 , s.t. am is implementable for δ = δM .
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The Multi-Period Setup

Proposition 5

If aP � a∗P , aP , and additional punishment periods are introduced, the lowest discount
factor δM that permits the implementation of am � a∗m cannot be as low as δ∗, and can

attain δ only in particular circumstances. More formally, either aP � a∗P so that
δ∗ < δM < δ, or aP � a∗P and δ ≤ δM < δ. In the latter case δM = δ if and only if

ãP � aP � aP � a∗P .

⇒ l > 1 only an imperfect substitute to early severe punishment
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A Linear Example

Firms in N = {1, . . . , n} incur a constant marginal cost c ≥ 0 to sell q to consumers with
utility function

U(q, I ) =
n

∑
i=1

qi −
1
2

(
n

∑
i=1

q2i + 2γ ∑
i 6=j
qiqj

)
+ I ,

all qi , qj ≥ 0, j ∈ N\{i}, where γ ∈ (0, 1) measures product substitutability.

Limited Liability constraint:

pi (qP ) ≥ 0,

all i ∈ N .

Proposition 6

The parameter space (c , n,γ) is partitioned in three subsets where either Regime 1, 2, or

3, as defined in (1), applies.
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A Linear Example

Regime 1 applies if and only if

(i) 2 ≤ n ≤ 3; 0 ≤ γ ≤ 1; 0 ≤ c < 1; or
(ii) 4 ≤ n ≤ 5; 0 ≤ γ ≤ 1; c ′ ≤ c < 1; or
(iii) 6 ≤ n; 0 ≤ γ ≤ γ̂; 0 ≤ c < 1; or
(iv) 6 ≤ n; γ̂ ≤ γ ≤ γ̌; c ′ ≤ c < 1.

Regime 2 applies if and only if

6 ≤ n; γ̌ ≤ γ ≤ 1; c ′′ ≤ c < 1.

Regime 3 applies if and only if

(i) n = 3; γ = γ̂ = 1; c = c = 0; or

(ii) 4 ≤ n ≤ 5; γ̂ ≤ γ ≤ 1; 0 ≤ c ≤ c ′; or
(iii) 6 ≤ n; γ̂ ≤ γ ≤ γ̌; 0 ≤ c ≤ c ′; or
(iv) 6 ≤ n; γ̌ ≤ γ ≤ 1; 0 ≤ c ≤ c ′′.
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A Linear Example

Figure: Collusion regimes in plane (c ,γ) for n ≥ 6. The limited liability constraint binds in the
grey area (regime 3). In the benchmark single-period set-up, the collusive quantity is not

implementable below the frontier c̃ .
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Policy Implications

Regulatory constraint:

π(a) ≥ πR , (R)

with πR ≡ π(aR ), and aP � aR � a∗m , implying that π ≤ πR ≤ π∗m .

Proposition 8

Suppose that firms implement am � aNE . By setting a price floor slightly below the
observed transaction price, and by reducing the floor incrementally by iteration, the

regulator drives the industry to the stage-game Nash equilibrium aNE .
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Policy Implications

Figure: Cournot linear setup (n = 5, γ = 1, c = 1/10, δ = 3/5). Initially, all firms implement

q∗m . A price floor rules out large price reductions (i.e., q ≤ qR ,1 , with qR ,1 above q
∗
m , but only

limitedly so). A series of successive adjustments from qR ,1 to qR ,2 , qR ,3 , ... drives the industry

toward the stage-game Nash equilibrium (point N ).
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Policy Implications

Lemma 5
Consider any implementable collusive action am . Then aR � aNE implies that am � aR .

***
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