1.1. Equation fonctionnelle - Point fixes et convergence.

• L'équation fonctionnelle décrivant le comportement de l'économie s'écrit:

$$p_{t+1} = f\left(p_t\right)$$

- On suppose que les prix restent dans un compact K. Dans le cas uni-dimentionnel, $p_t \in [a,b]$ avec $f([a,b]) \subset [a,b]$.
- Il existe au moins un point fixe dans K.
- Diagramme des phases: $p_{t+1} > p_t \Leftrightarrow f(p_t) > p_t$.
- La dynamique autour des points d'équilibre dépend de la pente de f(p) en ce point.
- Etude de la dynamique dans le cas suivant d'une fonction linéaire par morceaux:

$$p_{t+1} - p_* = a (p_t - p_*)$$

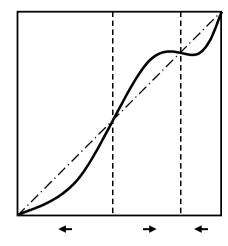


Figure 1.1:

© Etienne B. de Villemeur 2000 - Université de Toulouse I - http://www.bigfoot.com/~EBDV

Convergence: 0 < a < 1

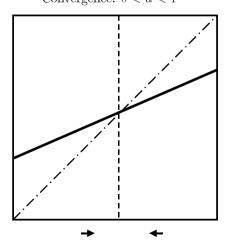


Figure 1.2:

© Etienne B. de Villemeur 2000 - Université de Toulouse I - http://www.bigfoot.com/~EBDV

Convergence en oscillant: -1 < a < 0

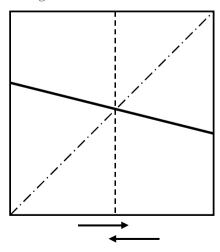


Figure 1.3:

Divergence: a > 1

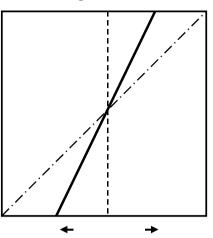


Figure 1.4:

Divergence en oscillant: a < -1

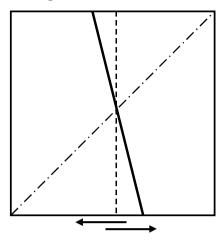


Figure 1.5:

© Etienne B. de Villemeur 2000 - Université de Toulouse I - http://www.bigfoot.com/~EBDV

1.2. Existence de cycles

• Après deux périodes...

$$p_{t+2} = f(p_{t+1}) = f^{(\circ 2)}(p_t)$$

avec $f^{(\circ 2)}([a,b]) \subset [a,b]$. Donc $f^{(\circ 2)}$ admet au moins un point fixe.

- On suppose que $p_{t+1} = f(p_t)$ admet un unique point fixe $p^{(1)}$. C'est aussi un point fixe de $f^{(\circ 2)}$ et de $f^{(\circ n)}$.
- \bullet Existence de cycles d'ordre k : Il existe des valeurs de p pour lesquelles

$$f^{(\circ k)}(p) = p,$$

$$f^{(\circ j)}(p) \neq p, \quad j < k$$

© Etienne B. de Villemeur 2000 - Université de Toulouse I - http://www.bigfoot.com/~EBDV

$$f(p_t) = a p_t (1 - p_t) \quad \forall p_t \in [0, 1], \quad a > 1.$$

• Point d'équilibre:

$$f(p_*^{(1)}) = p_*^{(1)} = a p_*^{(1)} (1 - p_*^{(1)})$$

donc $p_*^{(1)} = 1 - 1/a$ ou $p_*^{(1)} = 0$.

• Etude de la famille de fonctions:

Stabilité:

$$f'(p) = a\left(1 - 2p\right)$$

donc $f'(p_*^{(1)}) = 2 - a$.

• Après deux périodes:

$$f^{(\circ 2)}(p_t) = a^2 p_t (1 - p_t) (1 - a p_t (1 - p_t))$$

On a: $df^{(\circ 2)}/dp = (df/dp)^2$ quand $p = p_*^{(1)}$.

De plus $df^{(\circ 2)}/dp$ quand df/dp = 0.

9

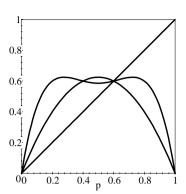
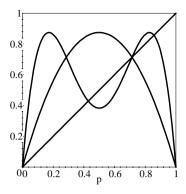


Figure 1.6: Un point d'équilibre stable pour $f\left(p\right)$ et $f^{\left(\circ2\right)}\left(p\right)$.



Un point d'équilibre instable pour $f\left(p\right)$ et $f^{\left(\circ2\right)}\left(p\right)$. Deux points d'équilibre stables pour $f^{\left(\circ2\right)}\left(p\right)$ [cycle d'ordre 2]

Figure 1.7: